I M.Tech - II Semester – Regular/Supplementary Examinations July - 2019

CODING THEORY (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hoursMax. Marks: 60Answer the following questions.

- 1. a) Illustrate encoding and decoding circuits of a systemic (7,4) codes. 8 M
 - b) Construct the decoding Table for a single error correcting (7, 4) Cyclic code, whose generator polynomial is $g(x)=1+x^2+x^3$. 7 M

OR

- 2. a) Draw the syndrome circuit for the (7,4) cyclic code generated by g(x)= 1+ x+x³. What will be its syndrome if the received vector is (0 0 1 0 1 1 0).
 8 M
 - b) List out and prove any three theorems related to cyclic codes.
 7 M
- 3. a) Illustrate t error correcting reed-solomon code with its generator polynomial. 6 M

b) Determine the generator polynomials of all primitive BCH codes of length 31. Use galios field GF (2^5) generated by $p(X) = 1+X^2+X^5$. 9 M

OR

- 4. a) Devise a syndrome computation circuit for a binary double error correcting (31,21) BCH Code. 10 M
 - b) Illustrate BCH code with its generator polynomial. 5 M
- 5. a) Draw and explain the operation of a (2,1,3) convolution encoder. 7 M
 - b) Consider (3,1,2) convolution code with $G(1) = (1 \ 1 \ 0)$, $G(2) = (1 \ 0 \ 1)$, $G(3) = (1 \ 1 \ 1)$. Draw the encoder block diagram and find the generator matrix G. 8 M

OR

- 6. a) Consider (3,1,5) systematic code with $G(2) = (1 \ 0 \ 1 \ 1 \ 0 \ 1)$, $G(3) = (1 \ 1 \ 0 \ 0 \ 1 \ 1)$. Find generator matrix G and parity sequence corresponding to the information sequence $u = (1 \ 1 \ 0 \ 1)$. 8 M
 - b) Consider (3,2,3) systematic code with $G(1) = 1 + D^2 + D^3$, $G(2) = 1 + D + D^3$. Draw the straight forward realization of encoder. 7 M

7. a) What are turbo codes? Briefly explain it with its turbo encoder ($r= 1/3$).	8 N	M
b) Discuss distance properties of turbo codes. OR	7 N	N
8. a) Give the performance analysis of turbo codes.	7 N	Л
b) What is an LDPC code? Give the equations for a simp	le	

LDPC code with n=12. 8 M