Code: 17ECMC2T5B

I M.Tech - II Semester - Regular/Supplementary Examinations July - 2019

CODING THEORY (MICROWAVE \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 60
Answer the following questions.

1. a) Illustrate encoding and decoding circuits of a systemic $(7,4)$ codes.
b) Construct the decoding Table for a single error correcting $(7,4)$ Cyclic code, whose generator polynomial is $g(x)=1+x^{2}+x^{3}$.

OR

2. a) Draw the syndrome circuit for the $(7,4)$ cyclic code generated by $g(x)=1+x+x^{3}$. What will be its syndrome if the received vector is (0010110). 8 M
b) List out and prove any three theorems related to cyclic codes.
3. a) Illustrate t error correcting reed-solomon code with its generator polynomial.
b) Determine the generator polynomials of all primitive BCH codes of length 31 . Use galios field GF $\left(2^{5}\right)$ generated by $p(X)=1+X^{2}+X^{5}$.

9 M
OR
4. a) Devise a syndrome computation circuit for a binary double error correcting $(31,21) \mathrm{BCH}$ Code.

10 M
b) Illustrate BCH code with its generator polynomial. 5 M
5. a) Draw and explain the operation of a $(2,1,3)$ convolution encoder.
b) Consider $(3,1,2)$ convolution code with $G(1)=\left(\begin{array}{ll}1 & 1\end{array}\right)$, $G(2)=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right), G(3)=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$. Draw the encoder block diagram and find the generator matrix G.

8 M OR
6. a) Consider $(3,1,5)$ systematic code with $G(2)=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} 1\right)$, $G(3)=\left(\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right)$. Find generator matrix G and parity sequence corresponding to the information sequence $u=\left(\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right)$.
b) Consider $(3,2,3)$ systematic code with $G(1)=1+D^{2}+D^{3}$, $G(2)=1+D+D^{3}$. Draw the straight forward realization of encoder.

7 M
7. a) What are turbo codes? Briefly explain it with its turbo encoder ($\mathrm{r}=1 / 3$).
b) Discuss distance properties of turbo codes.

OR

8. a) Give the performance analysis of turbo codes.
b) What is an LDPC code? Give the equations for a simple LDPC code with $\mathrm{n}=12$. 8 M
